

#### **Ground Bearing Pressure: Practical Applications for Lifts of All Sizes**



CERTIFICATION

Host:

**Guest Speaker:** 

BOOKSTORE

Mike Parnell President/CEO, Industrial Training International

Jim Jatho Heavy Lift & Rigging Planner, Buckner Heavylift Cranes

E-LEARNING

The views expressed in this presentation are that of ITI and are not necessarily the views of the ASME or any of its committees

WEBINARS



FIELD SERVICES

TRAINING

We Rig it Right! iti.com

WORKSHOPS

### WHO WE ARE

A world leader in crane and rigging training and consulting.



We Rig It Right!





### WHO WE ARE

We Serve a Variety of Industries

- Aerospace
- Chemicals
- Construction
- DOD
- DOE
- Electric Utility
- Hydro
- Manufacturing

- Maritime
- Mining
- Nuclear
- Oil & Gas
- Pulp & Paper
- Railroad
- Shipbuilding
- Wind Energy





### **OUR CUSTOMERS**

The World's Greatest Organizations Trust ITI's Expertise with their Crane & Rigging Operations





### SHOWCASE WEBINAR SERIES

#### **Past Presentations:**

- How to Manage a Crane Accident
- Automation Equipment Inspection and Asset Management
- 10 Points of Lift Plan Development
- 9 Questions You Must Ask When Selecting a Crane and Rigging Training Provider
- Crane Accident Investigation
- Terex Presents: Ground Condition and Preparation for Mobile Cranes
- Rigger & Signal Person 1926.1400
- Ground Condition Surveys & Stabilization Techniques
- Winch, Drag or Roll?

**Today's Presentation:** 

**Ground Bearing Pressure: Practical Applications for Lifts of All Sizes** 

**Coming up Next:** 

Load Distribution: Trolley Beams and 2-Crane Picks



### **MIKE PARNELL-ABOUT YOUR HOST**

Mr. Parnell has a wealth of knowledge regarding cranes, rigging, and lifting activities throughout a variety of industries.

- 30+ years learning about wire rope, rigging, load handling, and lifting activities.
- Vice Chair of the ASME B30 Main Committee which sets the standards in the U.S. for cranes and rigging.
- Chair of the AMSE P30 Main Committee which sets the standards for lift planning.

ASME standards are also adopted by many countries around the world.

The views expressed in this presentation are that of ITI and are not necessarily the views of the ASME or any of its committees.





### JIM JATHO – ABOUT YOUR GUEST SPEAKER

Mr. Jatho is still a newcomer to the heavy lift industry with only three years experience, but in that time has achieved 100+ Critical Lifts planned and executed without incident:

- In environments including oil refineries, chemical plants, fertilizer plants, windfarms, and nuclear power plants
- Involving cranes as large as 750 tonnes in capacity, and currently developing preliminary plans for the new Liebherr 1000 tonne crane.
- All while developing his own tools and software to aid in the lift planning process



The views expressed in this presentation are that of ITI and are not necessarily the views of the ASME or any of its committees.





#### Ground Bearing Pressure: Practical Applications for Lifts of All Sizes





STEEL / PRECAST / STACK ERECTIO HEAVYLIFT CRANES INDUSTRIAL RIGGING MISCELLANEOUS FABRICATION

### going the distance...since 1947



# Rankings

#### National Ranking American Crane and Transport

#13-most cranes (Total Lift Capacity)#7- largest crane#8-largest crawler crane fleet

**Engineering News Record** #9-Steel Erection

World Ranking International Crane #22- most cranes (Total Lift Capacity)







## **Our Fleet**

#### **CRAWLER CRANE FLEET**

mulitple units

| IHI CCH-700                    | 72T     |
|--------------------------------|---------|
| Terex HC-80                    | 80T     |
| Mantis Tele-Crawler 20010      | 100T    |
| Liebherr Tele-Crawler LTR-1100 | 110T    |
| Terex HC-110                   | 110T    |
| Kobelco CK-1600                | 160T    |
| Manitowoc 777                  | 200T    |
| Manitowoc 888                  | 230T    |
| Manitowoc 999                  | 275T    |
| Liebherr LR-1350               | 385T    |
| Liebherr LR-1400/1&2           | 440T**  |
| Demag 2800-1/NT                | 660T**  |
| Liebherr LR-1600/2             | 660T**  |
| Liebherr LR-1750               | 825T**  |
| Liebherr LR-11000              | 1100T** |
| Liebherr LR-11000/P1300        | 1433T** |

\*\*Significant capacity increase when utilizing heavy lift attachments







### **The Reason**







### **The Reason**







# **The Data**



- LR 11350, 102m Main Boom, 42m Derrick with Ballast Tray

- 2,185 tonnes gross crane weight

- 39.02 tonnes / m² (7,993lbs/ft²) Beneath tracks

- "The LR11350 was only working at 82% of the Load Chart"









188,635 lbs

48.16 ft<sup>2</sup>

12.04 ft

3.07 ft

885,909 lb-in

32,430 lbs

3,917 lbs/ft<sup>2</sup>

769 lbs/in<sup>2</sup>

84 lbs/in<sup>2</sup> 4,000 lbs/ft<sup>2</sup>

| TL                        | Track bearing length     | 37.00 ft                  |                           |
|---------------------------|--------------------------|---------------------------|---------------------------|
| С                         | Bearing width of track   | 5.90 ft                   | Ρ                         |
| $T_{TL}$                  | Track toe load           | 7,993 lbs/ft <sup>2</sup> | A <sub>reqd</sub>         |
| $T_{HL}$                  | Track heel load          | 7,993 lbs/ft <sup>2</sup> | $L_{reqd}$                |
| В                         | Mat width                | 4.0 ft                    | L <sub>c</sub>            |
| W                         | Mat Length               | 20.0 ft                   | q                         |
| d                         | Mat thickness            | 12.0 in                   | М                         |
| W                         | Weight of mat            | 4,000 lbs                 | $\mathbf{f}_{\mathbf{b}}$ |
| $\mathbf{q}_{a}$          | Allowable GBP            | 4,000 lbs/ft <sup>2</sup> | V                         |
| $\mathbf{F}_{\mathbf{b}}$ | Allowable bending stress | 1,400 lbs/in <sup>2</sup> | $f_{v}$                   |
| $\mathbf{F}_{\mathbf{v}}$ | Allowable shear stress   | 200 lbs/in <sup>2</sup>   | $\mathbf{q}_{\mathrm{t}}$ |
|                           |                          |                           |                           |

15.21 ft

|      |                           | Soil Bearing Method        |
|------|---------------------------|----------------------------|
|      | Р                         | Load applied to one mat    |
| /ft² | $A_{reqd}$                | Required mat bearing area  |
| /ft² | $L_{reqd}$                | Required effective length  |
|      | L <sub>c</sub>            | Cantilevered length of mat |
|      | q                         | GBP due to P               |
|      | М                         | Bending moment in the mat  |
|      | $\mathbf{f}_{b}$          | Bending stress due to M    |
| /ft² | V                         | Shear in the mat           |
| /in² | $\mathbf{f}_{\mathbf{v}}$ | Shear stress due to V      |
| /in² | qt                        | Maximum GBP                |
|      |                           |                            |

#### Mat Strength Method

| Ρ              | Crane load applied to one mat |
|----------------|-------------------------------|
| L,             | Cantilevered length of mat    |
| q              | GBP due to P                  |
| М              | Bending moment in the mat     |
| f <sub>h</sub> | Bending stress due to M       |
| v              | Shear in the mat              |
| f              | Shear stress due to V         |
| q <sub>t</sub> | actual GBP                    |

**Pressure Beneath Mats:** 

188,635 lbs

1,612,439 lb-in

45,329 lbs

4.66 ft

3,101 lbs/ft<sup>2</sup>

1400 lbs/in<sup>2</sup>

118 lbs/in<sup>2</sup>

3,166 lbs/ft<sup>2</sup>

#### LiftingLogistics.com/result/13

Ground bearing pressure: 79.16% of allowable capacity Bending stress in mat: 99.98% of allowable capacity Shear stress in mat: 59.02% of allowable capacity

#### 3,166lbs/ft<sup>2</sup>





L<sub>eff</sub> Assumed effective length

# **Where This Started**







## **The Source**

- Mat Length Based on Soil Bearing Capacity
- Mat Length Based on Mat Strength



#### Effective Bearing Length of Crane Mats

David Duerr, P.E. 2DM Associates, Inc., Consulting Engineers Houston, Texas

#### INTRODUCTION

Crane mats are used to distribute the high concentrated loads from mobile cranes over a relatively large ground area so that the soil is loaded at tolerable bearing pressures. This has been common construction industry practice for many decades. Although crane mats are most commonly made of heavy timbers, fabricated steel mats are occasionally used under large cranes or when soil conditions are poor.

The analysis of a crane mat requires a determination of the length of the mat that actually bears on the soil and contributes to the support of the crane. At working loads, thus is a relatively simple "beam on an elastic foundation" problem. However, such a solution may not produce a realistic result due to the nonlinearity of the soil as the ultimate bearing capacity is approached. Further, the classic properties of the soil needed to perform such an analysis are not often available.

The purpose of this paper is to develop a practical means of calculating the effective bearing length of a crane mat that is based on readily available values and that produces an acceptably safe and reliable result.

#### CURRENT PRACTICE

Engineers in construction presently use a number of different approaches to design crane mats. The two most common of these methods are described here.

#### Mat Length Based on Soil Bearing Capacity

This crane mat design method is the most straightforward. Once the load from the crane has been calculated, whether an outrigger load or a crawler track pressure, the required crane mat area is calculated by dividing the crane load plus the weight of the mat by the allowable ground bearing pressure. Divide this area by the width of the mat and we have the required effective bearing length. This mat length is then used to calculate bending and shear stresses in the mat, based on the assumption of a uniform pressure equal to the crane load divided by the bearing area acting upward on the bottom of the mat. If the actual stresses are equal to or less than the allowable stresses, the mat is acceptable. This method can be Copyright C 2010 by 2DM Associates, Inc.

Presented at the Crane & Rigging Conference Houston, Texas May 26 – 27, 2010 written in equation form as follows. The basic arrangement is illustrated in Fig. 1. Note that Eqs. 7 and 8 are written for the design of timber crane mats. The term d in Eq. 7 and the coefficient 1.5 in Eq. 8 are not used for the design of steel mats.

$$\begin{split} A_{reqd} &= \frac{P+W}{q_a} \qquad (1) \\ L_{reqd} &= \frac{A_{reqd}}{B} \qquad (2) \\ L_c &= \frac{L_{reqd}-C}{2} \qquad (3) \\ q &= \frac{P}{L_{reqd}B} \qquad (4) \\ M &= \frac{(qB)L_c^2}{2} \qquad (5) \\ f_b &= \frac{M}{Bd^2/6} \leq F_b \qquad (6) \end{split}$$

$$V = (qB)(L_c - d)$$

$$f_v = \frac{1.5V}{Rd} \le F_v$$
(8)

where:

crane load applied to one mat;
 self-weight of the mat;



Fig. 1. Simple Crane Mat Arrangement





# **Mat Length Based on Soil Bearing Capacity**

 $\boldsymbol{D}$ 

 $F_b$ V

 $f_{v} \\ F_{v}$ 

$$A_{reqd} = \frac{P + W}{q_a}$$
$$L_{reqd} = \frac{A_{reqd}}{R}$$

B

$$L_c = \frac{L_{reqd} - C}{2}$$
$$q = \frac{P}{L_{reqd}B}$$

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

$$M = \frac{(qB)L_c^2}{2}$$
$$f_b = \frac{M}{Bd^2/6} \le F_b$$

$$V = (qB)(L_c - d)$$
$$f_v = \frac{1.5V}{Bd} \le F_v$$

$$W = \text{self-weight of the mat;}$$

$$W = \text{self-weight of the mat;}$$

$$q_a = \text{allowable ground bearing pressure;}$$

$$A_{reqd} = \text{required mat bearing area;}$$

$$B = \text{mat width;}$$

$$L_{reqd} = \text{required effective bearing length of the mat;}$$

$$C = \text{bearing width of the track or outrigger pad;}$$

$$L_c = \text{cantilevered length of the mat;}$$

$$q = \text{ground bearing pressure due to } P;$$

$$M = \text{bending moment in the mat;}$$

$$d = \text{mat depth (or thickness);}$$

$$f_b = \text{bending stress due to } M;$$

crane load applied to one mat.

- = allowable bending stress;
- shear in the mat; =
- shear stress due to V; and, =
- allowable shear stress. =





# Mat Length Based on Mat Strength

$$L_c = \frac{L_{eff} - C}{2} \tag{9}$$

$$q = \frac{P}{L_{eff}B}$$
(10)

$$M = \frac{(qB)L_c^2}{2} \tag{11}$$

$$f_b = \frac{M}{Bd^2/6} = F_b \tag{12}$$

$$V = (qB)(L_c - d) \tag{13}$$

$$f_v = \frac{1.5V}{Bd} = F_v \tag{14}$$

$$q_t = \frac{P + W}{L_{eff}B} \le q_a \tag{15}$$

| P           | =                                                                                                                             | crane load applied to one mat;                                                                                                                                                                                                                                                                     |
|-------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| W           | =                                                                                                                             | self-weight of the mat;                                                                                                                                                                                                                                                                            |
| $q_a$       | =                                                                                                                             | allowable ground bearing pressure;                                                                                                                                                                                                                                                                 |
| Aread       | =                                                                                                                             | required mat bearing area;                                                                                                                                                                                                                                                                         |
| B           | =                                                                                                                             | mat width;                                                                                                                                                                                                                                                                                         |
| Lroad       | =                                                                                                                             | required effective bearing length of the mat;                                                                                                                                                                                                                                                      |
| C           | =                                                                                                                             | bearing width of the track or outrigger pad;                                                                                                                                                                                                                                                       |
| $L_{c}$     | =                                                                                                                             | cantilevered length of the mat;                                                                                                                                                                                                                                                                    |
| q           | =                                                                                                                             | ground bearing pressure due to $P$ ;                                                                                                                                                                                                                                                               |
| $\hat{M}$   | =                                                                                                                             | bending moment in the mat;                                                                                                                                                                                                                                                                         |
| d           | =                                                                                                                             | mat depth (or thickness);                                                                                                                                                                                                                                                                          |
| fh          | =                                                                                                                             | bending stress due to $M$ ;                                                                                                                                                                                                                                                                        |
| $F_{h}$     | =                                                                                                                             | allowable bending stress;                                                                                                                                                                                                                                                                          |
| $V^{\nu}$   | =                                                                                                                             | shear in the mat;                                                                                                                                                                                                                                                                                  |
| f.          | =                                                                                                                             | shear stress due to $V$ ; and,                                                                                                                                                                                                                                                                     |
| $F_{\rm H}$ | =                                                                                                                             | allowable shear stress.                                                                                                                                                                                                                                                                            |
| Laff        | =                                                                                                                             | effective mat bearing length;                                                                                                                                                                                                                                                                      |
| $a_{\star}$ | =                                                                                                                             | actual ground bearing pressure; and,                                                                                                                                                                                                                                                               |
|             | $P \\ W \\ q_a \\ A_{reqd} \\ B \\ L_{reqd} \\ C \\ L_c \\ q \\ M \\ d \\ f_b \\ F_b \\ V \\ f_v \\ F_v \\ L_{eff} \\ q \\ A$ | $\begin{array}{rcl} P & = & \\ W & = & \\ q_a & = & \\ A_{reqd} & = & \\ B & = & \\ L_{reqd} & = & \\ C & = & \\ C & = & \\ L_c & = & \\ q & = & \\ M & = & \\ d & = & \\ f_b & = & \\ F_v & = & \\ F_v & = & \\ L_{eff} & = & \\ q_t & = & \\ \end{array}$ |







# **Combining The Methods**

| TL              | Track bearing length     | 37.00 ft                  |                   | Soil Bearing Method        |                           |                | Mat Strength Method           |                           | Ground bearing pressure:     |
|-----------------|--------------------------|---------------------------|-------------------|----------------------------|---------------------------|----------------|-------------------------------|---------------------------|------------------------------|
| С               | Bearing width of track   | 5.90 ft                   | Р                 | Load applied to one mat    | 188,632 lbs               | Р              | Crane load applied to one mat | 188,632 lbs               | 79.15% of allowable capacity |
| T <sub>TL</sub> | Track toe load           | 7,993 lbs/ft <sup>2</sup> | A <sub>reqd</sub> | Required mat bearing area  | 48.16 ft <sup>2</sup>     | L,             | Cantilevered length of mat    | 4.66 ft                   | Bending stress in mat:       |
| T <sub>HL</sub> | Track heel load          | 7,993 lbs/ft <sup>2</sup> | L <sub>reqd</sub> | Required effective length  | 12.04 ft                  | q              | GBP due to P                  | 3,100 lbs/ft <sup>2</sup> | 99.98% of allowable capacity |
| в               | Mat width                | 4.0 ft                    | L <sub>c</sub>    | Cantilevered length of mat | 3.07 ft                   | м              | Bending moment in the mat     | 1,612,411 lb-in           | Shear stress in mat:         |
| w               | Mat Length               | 20.0 ft                   | q                 | GBP due to P               | 3,917 lbs/ft <sup>2</sup> | f <sub>b</sub> | Bending stress due to M       | 1400 lbs/in <sup>2</sup>  | 59.02% of allowable capacity |
| d               | Mat thickness            | 12.0 in                   | М                 | Bending moment in the mat  | 885,851 lb-in             | V              | Shear in the mat              | 45,329 lbs                |                              |
| w               | Weight of mat            | 4,000 lbs                 | f <sub>b</sub>    | Bending stress due to M    | 769 lbs/in <sup>2</sup>   | f              | Shear stress due to V         | 118 lbs/in²               |                              |
| qa              | Allowable GBP            | 4,000 lbs/ft <sup>2</sup> | V                 | Shear in the mat           | 32,428 lbs                | qt             | actual GBP                    | 3,166 lbs/ft <sup>2</sup> |                              |
| Fb              | Allowable bending stress | 1,400 lbs/in <sup>2</sup> | f <sub>v</sub>    | Shear stress due to V      | 84 lbs/in <sup>2</sup>    |                |                               |                           |                              |
| Fv              | Allowable shear stress   | 200 lbs/in <sup>2</sup>   | qt                | Maximum GBP                | 4,000 lbs/ft <sup>2</sup> |                | Droccuro Donos                | th Mate                   | 2 166 lbc/f+2                |
| $L_{eff}$       | Assumed effective length | 15.21 ft                  |                   |                            |                           |                | Pressure Bened                | attriviats:               | 5,100105/11 <sup>-</sup>     |





# **Applications of Crane Mats**

- Outrigger pads under outriggers
- Hardwood mats under outriggers
- Hardwood mats under crawler tracks





# **Outrigger Pads**









# **Outrigger Pad Data**

| LOAD CAP/<br>UHMW PAI | ACITY OF<br>DS (pounds) | WIDTH | LENGTH | THICKNESS | LBS | IN <sup>2</sup> | FT <sup>2</sup> |
|-----------------------|-------------------------|-------|--------|-----------|-----|-----------------|-----------------|
| VERTICAL              | 45 ANGLE                |       |        |           |     |                 |                 |
| 55,000                | 30,000                  | 18″   | 18″    | 1″        | 11  | 324             | 2.25            |
| 60,000                | 35,000                  | 22″   | 24″    | 1″        | 19  | 528             | 3.66            |
| 60,000                | 35,000                  | 24″   | 24″    | 1″        | 20  | 576             | 4               |
| 62,000                | 40,000                  | 24″   | 24″    | 2″        | 38  | 576             | 4               |
| 81,000                | 41,000                  | 30″   | 30″    | 1″        | 31  | 900             | 6.25            |
| 85,000                | 43,000                  | 30″   | 30″    | 2″        | 62  | 900             | 6.25            |
| 93,000                | 43,000                  | 36″   | 36″    | 1″        | 45  | 1296            | 9               |
| 98,000                | 45,000                  | 36″   | 36″    | 2″        | 90  | 1296            | 9               |
| 140,000               | 55,000                  | 48″   | 48″    | 2″        | 160 | 2034            | 14.125          |





# **Outriggers on Crane Mats**







## **Transition Mats**







## **Transition Mats**







## **Crawlers on Mats**







## **Crawler Example**







Ground Bearing Pressure & Mat Strength Analysis







# **The Actual Report**







# Hard vs. Soft Ground







## Hard vs. Soft Ground







# Hard vs. Soft Ground

|          |             |            |            |             |            |                         | % Difference in |
|----------|-------------|------------|------------|-------------|------------|-------------------------|-----------------|
|          | S           | oft Ground |            | Н           | ard Ground |                         | bearing area    |
|          | Length (in) | Width (in) | Area (in²) | Length (in) | Width (in) | Area (in <sup>2</sup> ) |                 |
| 777      | 257.5       | 47.3       | 12179.75   | 209         | 20.3       | 4242.7                  | 287%            |
| 888      | 296         | 47.3       | 14000.8    | 240         | 20.3       | 4872                    | 287%            |
| 999      | 296         | 47.3       | 14000.8    | 240         | 20.3       | 4872                    | 287%            |
| 16000    | 355         | 60         | 21300      | 296.5       | 50         | 14825                   | 144%            |
| 18000    | 414.5       | 60         | 24870      | 348         | 50         | 17400                   | 143%            |
|          |             |            |            |             |            |                         |                 |
| LR 11000 | 385.82      | 78.74      | 30379.47   | 377.95      | 70.86      | 26781.54                | 113%            |





# **Hard Ground Numbers**







# **Soft Ground Numbers**













Industrial Training INTERNATIONAL SHOWCASE WEBINAR SERIES



# Hard vs. Soft Tables

| TL              | Track bearing length     | 31.49 ft                  |                   | Soil Bearing Method        |                           |    | Mat Strength Method           |          |           | Ground bearing    | pressure:           |
|-----------------|--------------------------|---------------------------|-------------------|----------------------------|---------------------------|----|-------------------------------|----------|-----------|-------------------|---------------------|
| с               | Bearing width of track   | 5.90 ft                   | Р                 | Load applied to one mat    | 207,087 lbs               | Ρ  | Crane load applied to one mat | 207,08   | 7 lbs     | 90.36% of allow   | able capacity       |
| T <sub>TL</sub> | Track toe load           | 8,784 lbs/ft <sup>2</sup> | A <sub>reqd</sub> | Required mat bearing area  | 52.77 ft <sup>2</sup>     | L, | Cantilevered length of mat    | 4.3      | 5 ft      | Bending stress in | n mat:              |
| T <sub>HL</sub> | Track heel load          | 8,640 lbs/ft <sup>2</sup> | L <sub>reqd</sub> | Required effective length  | 13.19 ft                  | q  | GBP due to P                  | 3,54     | 6 lbs/ft² | 99.85% of allow   | able capacity       |
| В               | Mat width                | 4.0 ft                    | Lc                | Cantilevered length of mat | 3.65 ft                   | М  | Bending moment in the mat     | 1,610,38 | 2 lb-in   | Shear stress in r | nat:                |
| w               | Mat Length               | 30.0 ft                   | q                 | GBP due to P               | 3,924 lbs/ft <sup>2</sup> | f  | Bending stress due to M       | 139      | 8 lbs/in² | 61.87% of allow   | able capacity       |
| d               | Mat thickness            | 12.0 in                   | М                 | Bending moment in the mat  | 1,252,288 lb-in           | v  | Shear in the mat              | 47,51    | 6 lbs     |                   |                     |
| w               | Weight of mat            | 4,000 lbs                 | f <sub>b</sub>    | Bending stress due to M    | 1,087 lbs/in <sup>2</sup> | f  | Shear stress due to V         | 12       | 4 lbs/in² |                   |                     |
| qa              | Allowable GBP            | 4,000 lbs/ft <sup>2</sup> | V                 | Shear in the mat           | 41,541 lbs                | q, | actual GBP                    | 3,61     | 4 lbs/ft² |                   |                     |
| $F_{b}$         | Allowable bending stress | 1,400 lbs/in <sup>2</sup> | f <sub>v</sub>    | Shear stress due to V      | 108 lbs/in <sup>2</sup>   | İ  |                               |          |           |                   |                     |
| Fv              | Allowable shear stress   | 200 lbs/in <sup>2</sup>   | qt                | Maximum GBP                | 4,000 lbs/ft <sup>2</sup> |    | Draccura Dana                 | -+h N/   | .+        | 2 6 1 4           | lbc/f+2             |
| $L_{eff}$       | Assumed effective length | 14.60 ft                  |                   |                            |                           |    | Pressure Benea                |          |           | 3,014             | IDS/IL <sup>-</sup> |

| TL                 | Track bearing length     | 32.15 ft                  |                   | Soil Bearing Method        |                           |                | Mat Strength Method           |                           | Ground bearing pressure:     |
|--------------------|--------------------------|---------------------------|-------------------|----------------------------|---------------------------|----------------|-------------------------------|---------------------------|------------------------------|
| С                  | Bearing width of track   | 6.56 ft                   | Р                 | Load applied to one mat    | 203,807 lbs               | Ρ              | Crane load applied to one mat | 203,807 lbs               | 83.04% of allowable capacity |
| T <sub>TL</sub>    | Track toe load           | 7,776 lbs/ft <sup>2</sup> | A <sub>reqd</sub> | Required mat bearing area  | 51.95 ft <sup>2</sup>     | L,             | Cantilevered length of mat    | 4.54 ft                   | Bending stress in mat:       |
| T <sub>HL</sub>    | Track heel load          | 7,632 lbs/ft <sup>2</sup> | L <sub>reqd</sub> | Required effective length  | 12.99 ft                  | q              | GBP due to P                  | 3,258 lbs/ft <sup>2</sup> | 99.92% of allowable capacity |
| в                  | Mat width                | 4.0 ft                    | Lc                | Cantilevered length of mat | 3.21 ft                   | М              | Bending moment in the mat     | 1,611,557 lb-in           | Shear stress in mat:         |
| w                  | Mat Length               | 30.0 ft                   | q                 | GBP due to P               | 3,923 lbs/ft <sup>2</sup> | f <sub>h</sub> | Bending stress due to M       | 1399 lbs/in <sup>2</sup>  | 60.07% of allowable capacity |
| d                  | Mat thickness            | 12.0 in                   | М                 | Bending moment in the mat  | 972,557 lb-in             | V              | Shear in the mat              | 46,130 lbs                |                              |
| w                  | Weight of mat            | 4,000 lbs                 | f <sub>b</sub>    | Bending stress due to M    | 844 lbs/in <sup>2</sup>   | f              | Shear stress due to V         | 120 lbs/in <sup>2</sup>   |                              |
| qa                 | Allowable GBP            | 4,000 lbs/ft <sup>2</sup> | v                 | Shear in the mat           | 34,742 lbs                | q,             | actual GBP                    | 3,322 lbs/ft <sup>2</sup> |                              |
| $F_{b}$            | Allowable bending stress | 1,400 lbs/in <sup>2</sup> | f <sub>v</sub>    | Shear stress due to V      | 90 lbs/in <sup>2</sup>    | ĺ              |                               |                           |                              |
| Fv                 | Allowable shear stress   | 200 lbs/in <sup>2</sup>   | qt                | Maximum GBP                | 4,000 lbs/ft <sup>2</sup> |                | Draccura Dana                 | oth Moto                  | 2 222 lbc /f+2               |
| $L_{\mathrm{eff}}$ | Assumed effective length | 15.64 ft                  |                   |                            |                           |                | Pressure Benea                | ath wats:                 | 3,322105/11-                 |





# Liebherr – Hard vs. Soft?

LR 1400, LR 1600, and LR 1750 have no additional allowance for bearing area in Liccon







## **Load Case Scenarios**

#### Ground Bearing Pressure – Grove GMK 7550, Maximum Radius, Fully Loaded.







# **Printed Large Dataset**

BUCKNER HEAVYLIFT CRANES

|       |                                             |       | Contents                                     |       |                                                |
|-------|---------------------------------------------|-------|----------------------------------------------|-------|------------------------------------------------|
| Sheet | Description                                 | Sheet | Description                                  | Sheet | Description                                    |
| 001   | Title Page                                  | 031   | 253' S Boom 37737lbs Load Min Radius GBP     | 061   | 253' S Boom 128363lbs Load Max Radius GBP      |
| 002   | Summary                                     | 032   | 253' S Boom 37737lbs Load Max Radius Liccon  | 062   | 253'+57' S2F2 Olbs Load Min Radius Liccon      |
| 003   | 253' S Boom Load Chart                      | 033   | 253' S Boom 37737lbs Load Max Radius GBP     | 063   | 253'+57' S2F2 Olbs Load Min Radius GBP         |
| 004   | 253'-57' S2F2 Load Chart                    | 034   | 253' S Boom 43670lbs Load Min Radius Liccon  | 064   | 253'+57' S2F2 Olbs Load Max Radius Liccon      |
| 005   | Block Weight                                | 035   | 253' S Boom 43670lbs Load Min Radius GBP     | 065   | 253'+57' S2F2 Olbs Load Max Radius GBP         |
| 006   | 253' S Boom Olbs Load Min Radius Liccon     | 036   | 253' S Boom 43670lbs Load Max Radius Liccon  | 066   | 253'+57' S2F2 63641lbs Load Min Radius Liccon  |
| 007   | 253' S Boom Olbs Load Min Radius GBP        | 037   | 253' S Boom 43670lbs Load Max Radius GBP     | 067   | 253'+57' S2F2 63641lbs Load Min Radius GBP     |
| 008   | 253' S Boom Olbs Load Max Radius Liccon     | 038   | 253' S Boom 50791ibs Load Min Radius Liccon  | 068   | 253'+57' S2F2 63641lbs Load Max Radius Liccon  |
| 009   | 253' S Boom Olbs Load Max Radius GBP        | 039   | 253' S Boom 50791ibs Load Min Radius GBP     | 069   | 253'+57' S2F2 63641lbs Load Max Radius GBP     |
| 010   | 253' S Boom 5601lbs Load Min Radius Liccon  | 040   | 253' S Boom 50791lbs Load Max Radius Liccon  | 070   | 253'+57' S2F2 78582lbs Load Min Radius Liccon  |
| 011   | 253' S Boom 56011bs Load Min Radius GBP     | 041   | 253' S Boom 50791ibs Load Max Radius GBP     | 071   | 253'+57' S2F2 78582lbs Load Min Radius GBP     |
| 012   | 253' S Boom 56011bs Load Max Radius Liccon  | 042   | 253' S Boom 52113ibs Load Min Radius Liccon  | 072   | 253'+57' S2F2 78582lbs Load Max Radius Liccon  |
| 013   | 253' S Boom 5601lbs Load Max Radius GBP     | 043   | 253' S Boom 52113lbs Load Min Radius GBP     | 073   | 253'+57' S2F2 78582lbs Load Max Radius GBP     |
| 014   | 253' S Boom 8134lbs Load Min Radius Liccon  | 044   | 253' S Boorn 52113ibs Load Max Radius Liccon | 074   | 253'+57' S2F2 81719lbs Load Min Radius Liccon  |
| 015   | 253' S Boom 8134lbs Load Min Radius GBP     | 045   | 253' S Boorn 52113lbs Load Max Radius GBP    | 075   | 253'+57' S2F2 81719lbs Load Min Radius GBP     |
| 016   | 253' S Boom 8134lbs Load Max Radius Liccon  | 046   | 253' S Boom 59830lbs Load Min Radius Liccon  | 076   | 253'+57' S2F2 81719lbs Load Max Radius Liccon  |
| 017   | 253' S Boom 8134lbs Load Max Radius GBP     | 047   | 253' S Boom 59830lbs Load Min Radius GBP     | 077   | 253'+57' S2F2 81719lbs Load Max Radius GBP     |
| 018   | 253' S Boom 13664lbs Load Min Radius Liccon | 048   | 253' S Boom 59830lbs Load Max Radius Liccon  | 078   | 253'+57' S2F2 112363lbs Load Min Radius Liccon |
| 019   | 253' S Boom 13664lbs Load Min Radius GBP    | 049   | 253' S Boom 59830lbs Load Max Radius GBP     | 079   | 253'+57' S2F2 112363lbs Load Min Radius GBP    |
| 020   | 253' S Boom 13664lbs Load Max Radius Liccon | 050   | 253' S Boom 81719lbs Load Min Radius Liccon  | 080   | 253'+57' S2F2 112363lbs Load Max Radius Liccon |
| 021   | 253' S Boom 13664lbs Load Max Radius GBP    | 051   | 253' S Boom 81719lbs Load Min Radius GBP     | 081   | 253'+57' S2F2 112363lbs Load Max Radius GBP    |
| 022   | 253' S Boom 30541lbs Load Min Radius Liccon | 052   | 253' S Boom 81719lbs Load Max Radius Liccon  | 082   | 253'+57' S2F2 128363lbs Load Min Radius Liccon |
| 023   | 253' S Boom 30541lbs Load Min Radius GBP    | 053   | 253' S Boom 81719lbs Load Max Radius GBP     | 083   | 253'+57' S2F2 128363lbs Load Min Radius GBP    |
| 024   | 253' S Boom 30541lbs Load Max Radius Liccon | 054   | 253' S Boom 112363lbs Load Min Radius Liccon | 084   | 253'+57' S2F2 128363lbs Load Max Radius Liccon |
| 025   | 253' S Boom 30541lbs Load Max Radius GBP    | 055   | 253' S Boorn 112363lbs Load Min Radius GBP   | 085   | 253'+57' S2F2 128363lbs Load Max Radius GBP    |
| 026   | 253' S Boom 32791lbs Load Min Radius Liccon | 056   | 253' S Boom 112363lbs Load Max Radius Liccon |       |                                                |
| 027   | 253' S Boom 32791lbs Load Min Radius GBP    | 057   | 253' S Boom 112363lbs Load Max Radius GBP    |       |                                                |
| 028   | 253' S Boom 327911bs Load Max Radius Liccon | 058   | 253' S Boom 128363lbs Load Min Radius Liccon | ]     |                                                |
| 029   | 253' S Boom 32791lbs Load Max Radius GBP    | 059   | 253' S Boom 128363lbs Load Min Radius GBP    | ]     |                                                |
| 030   | 253' S Boom 37737lbs Load Min Radius Liccon | 060   | 253' S Boom 128363lbs Load Max Radius Liccon | ]     |                                                |
|       |                                             |       |                                              | -     |                                                |







# **Printed Large Dataset**

| LOCAT                                                                                                                                       | ON-                                                                                                                            |                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BUCKN                                                                                                                                       | ER CONTACT:                                                                                                                    | Kevin Lo                                                                                                                                                                                                                                                                                               |
|                                                                                                                                             |                                                                                                                                | Kevin@Bucknercompanies.co                                                                                                                                                                                                                                                                              |
|                                                                                                                                             | LAN BT:                                                                                                                        | Jatho <b>G</b> Bucknercompanies.co                                                                                                                                                                                                                                                                     |
| DRAWN                                                                                                                                       | IG NOTES:                                                                                                                      |                                                                                                                                                                                                                                                                                                        |
| Sun                                                                                                                                         | nmary                                                                                                                          |                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                             |                                                                                                                                |                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                             |                                                                                                                                |                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                             |                                                                                                                                |                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                             |                                                                                                                                |                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                             |                                                                                                                                |                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                             |                                                                                                                                |                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                             |                                                                                                                                |                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                             |                                                                                                                                |                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                             |                                                                                                                                |                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                             |                                                                                                                                |                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                             |                                                                                                                                |                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                             |                                                                                                                                |                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                             |                                                                                                                                |                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                             |                                                                                                                                |                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                             |                                                                                                                                |                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                             |                                                                                                                                |                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                             |                                                                                                                                |                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                             |                                                                                                                                |                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                             |                                                                                                                                |                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                             |                                                                                                                                |                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                             |                                                                                                                                |                                                                                                                                                                                                                                                                                                        |
| FILE:                                                                                                                                       |                                                                                                                                |                                                                                                                                                                                                                                                                                                        |
| FILE:                                                                                                                                       |                                                                                                                                |                                                                                                                                                                                                                                                                                                        |
| FILE:                                                                                                                                       | ED:                                                                                                                            | 02.17.2014 <b>0</b> 11:17:32                                                                                                                                                                                                                                                                           |
| FILE:<br>CREAT                                                                                                                              | ED:<br>3 TIME:<br>SIZE:                                                                                                        | 02.17.2014 • 11:17:32<br>7h&m [FILE SIZE: 3263.66<br>ANSI B (17.00 × 11.00 Inch                                                                                                                                                                                                                        |
| FILE:<br>CREAT<br>EDITINO<br>PAPER<br>SAVED                                                                                                 | ED:<br>3 TIME:<br>SIZE:                                                                                                        | 02.17.2014 • 11:17:32<br>7h8m [FILE SIZE: 3263.66<br>ANSI B (17.00 × 11.00 Inch<br>02.17.2014 • 6:17:42                                                                                                                                                                                                |
| FILE:<br>CREAT<br>EDITING<br>PAPER<br>SAVED<br>PLOTTE                                                                                       | ED:<br>3 TIME:<br>SIZE:<br>D:                                                                                                  | 02.17.2014 • 11:17:32<br>7h8m [FILE SIZE: 3283.66<br>ANSI 8 (17.00 x 11.00 inch<br>02.17.2014 • 6:17:42<br>0.3.26.2014 • 11:59:56                                                                                                                                                                      |
| FILE:<br>CREATI<br>EDITINO<br>PAPER<br>SAVED:<br>PLOTTE                                                                                     | ED:<br>3 TIME:<br>SIZE:<br>5D:                                                                                                 | 02.17.2014 • 11:17:32<br>7htm FILE 512E: 3263.66<br>ANSI 8 (17.00 x 11.00 inch<br>02.17.2014 • 6:17:42<br>03.26.2014 • 11:59:56<br>Revisions                                                                                                                                                           |
| FILE:<br>EDITINO<br>PAPER<br>SAVED:<br>PLOTTE                                                                                               | ed:<br>3 Time:<br>Size:<br>5:<br>D:<br>All St                                                                                  | 02.17.2014 © 11:17.32<br>7h8m (FILE SIZE: 3263.66<br>ANS 8 (7.50 x 11.00 inh)<br>02.17.2014 © 6.17.42<br>03.26.2014 © 11:58:56<br>Revisions<br>nests Same Revision Level                                                                                                                               |
| FILE:<br>CREATI<br>EDITING<br>PAPER<br>SAVED:<br>PLOTTE<br>Rev.                                                                             | ED:<br>3 TIME:<br>SIZE:<br>:<br>:<br>D:<br>All St<br>Date                                                                      | 02.17.2014 • 11:17.32<br>7h8m [PLE SIZE: 3283.56<br>ANSI 8 (17.00 x 11.00 Inch<br>02.17.2014 • 6:15<br>03.26.2014 • 11:59:56<br>Revisions<br>heats Some Revision Level<br>Description                                                                                                                  |
| FILE:<br>CREAT<br>EDITINO<br>PAPER<br>SAVED:<br>PLOTTE<br>Rev.<br>000                                                                       | ED:<br>3 TIME:<br>SIZE:<br>ED:<br>All St<br>Date<br>02.17.2014                                                                 | 02.17.2014 © 11:17:32<br>7h6m [FILE SIZE: 3263.66<br>ANS B (7.00 x 11.00 Inch<br>02.17.2014 © 6:17:42<br>03.26.2014 © 11:59:56<br>Revisions<br>nets Same Revision Lavel<br>Description<br>Perfininger Planning & Initial Lavau                                                                         |
| FILE:<br>CREATI<br>EDITINO<br>PAPER<br>SAVED:<br>PLOTTE<br>Rev.<br>000                                                                      | ED:<br>SIZE:<br>SIZE:<br>D:<br>All St<br>Date<br>02.17.2014                                                                    | 02.17.2014 @ 11:17.32<br>7h8m [FLE 5026: 3263.66<br>ANS 8 (7.00 x 11.00 inch<br>02.17.2014 @ 6:17.42<br>03.26.2014 @ 11:58:56<br>Revision S<br>neets Some Revision Level<br>Description<br>Preliminary Planning & Initial Layou                                                                        |
| FILE:<br>CREATI<br>EDITINO<br>PAPER<br>SAVED:<br>PLOTTE<br>Rev.<br>000<br>001                                                               | ED:<br>3 TIME:<br>SIZE:<br>D:<br>All Si<br>Date<br>02.17.2014<br>                                                              | 22.17.2014 © 11:17.32     7.6m [FILE SIZE: 3263.66     ANS 8 (7.50 x 11.00 inh     02.17.2014 © 6.17.42     03.26.2014 © 11:58:56     Revisions nests Same Revision Level     Description Preliminary Planning & Initial Layou                                                                         |
| FILE:<br>CREATI<br>EDITINO<br>PAPER<br>SAVED:<br>PLOTTE<br>Rev.<br>000<br>001<br>002                                                        | ED:<br>5 TIME:<br>SIZE:<br>D:<br>All St<br>Date<br>02.17.2014<br>                                                              | 02.17.2014 © 11:17:32<br>7h6m [FILE SIZE: 3263.66<br>ANS & (7.00 x 11.00 Inch<br>02.17.2014 © 6:17:42<br>03.26.2014 © 11:59:56<br>Revisions<br>nets Same Revision Lavel<br>Description<br>Preliminary Planing & Initial Layou<br>                                                                      |
| FILE:<br>CREATI<br>EDITINC<br>PAPER<br>SAVED:<br>PLOTTE<br>Rev.<br>000<br>001<br>002<br>003                                                 | ED:<br>SIZE:<br>SIZE:<br>D:<br>All SP<br>Date<br>02.17.2014<br><br>                                                            | 02.17.2014 • 11:17:32<br>7htm IFLE 502E: 3263.66<br>AVS1 • 6 (7.00 × 11:00 fich<br>02.17.2014 • 6:17:42<br>03.26.2014 • 11:59:56<br>Revision S<br>heats Some Revision Level<br>Description<br>Preliminary Planning & Initial Layou<br>                                                                 |
| FILE:<br>CREATI<br>EDITING<br>PAPER<br>SAVED:<br>PLOTTE<br>Rev.<br>000<br>001<br>002<br>003<br>004                                          | ED:<br>3 TIME:<br>SIZE:<br>DI:<br>All SI<br>Date<br>02.17.2014<br><br>                                                         | 02.17.2014 @ 11:17.32<br>7h8m  FILE 922E 3263.66<br>ANS 8 (17.00 x 11.00 Indu<br>02.17.2014 @ 6:17.42<br>03.26.2014 @ 11:58:56<br>Revisions<br>neets Same Revision Level<br>Description<br>Preliminary Planning & Initial Layou<br><br>                                                                |
| FILE:<br>CREATI<br>EDITING<br>PAPER<br>SAVED:<br>PLOTTE<br>PLOTTE<br>Rev.<br>000<br>001<br>002<br>003<br>004<br>005                         | ED:<br>3 TIME:<br>SIZE:<br>D:<br>All SI<br>Date<br>02.17.2014<br><br>                                                          | 02.17.2014 0 11:17:32<br>7h6m [FILE 522: 3263.66<br>AVS 8 (7.00 x 11.00 Inch<br>02.17.2014 0 6:17:42<br>03.28.2014 0 11:59:56<br>Revisions<br>nests Same Revision Level<br>Description<br>Preliminary Planning & Initial Layou<br><br><br>                                                             |
| FILE:<br>CREAT<br>EDITINO<br>PAPER<br>SAVED:<br>PLOTTE<br>Rev.<br>000<br>001<br>002<br>003<br>004<br>005<br>006                             | ED:<br>3 TME:<br>SIZE:<br>ED:<br>Dote<br>02.17.2014<br><br><br><br>                                                            | 02.17.2014 • 11:17:32<br>7htm IFLE 502E: 3263.66<br>MASS 8 (7.00 x 11:00 inch<br>02.17.2014 • 6:17:42<br>03.26.2014 • 0:17:42<br>REVISIONS<br>neets Some Revision Level<br>Description<br>Preliminary Pionning & Initial Layou<br>                                                                     |
| FILE:<br>CREATI<br>EDITING SAVED<br>PAPER<br>SAVED<br>PLOTTE<br>Rev.<br>000<br>001<br>002<br>003<br>004<br>005<br>006<br>007                | ED:<br>3 TME:<br>SIZE:<br>D:<br>Date<br>02.17.2014<br><br><br><br><br>                                                         | 02.17.2014 @ 11:17.32<br>758m [FILE 022: 3263.66<br>ANS 8 (7.00 x 11:00 Indu<br>02.17.2014 @ 6:17.42<br>03.26.2014 @ 11:58:56<br>Revisions<br>neets Same Revision Level<br>Description<br>Preliminary Planning & Initial Layou<br><br><br><br><br>                                                     |
| FILE:<br>CREATING<br>EDITING<br>SAVED:<br>SAVED:<br>PLOTTE<br>Rev.<br>000<br>001<br>002<br>003<br>004<br>005<br>006<br>007<br>005           | ED:<br>3 TME:<br>SZE:<br>D:<br>D:<br>All SI<br>02.17.2014<br><br><br><br><br>                                                  | 02.17.2014 @ 11:17:32<br>7\mbm IPLE 322: 2325.66<br>AVS 8 (7.00 x 11.00 Inch<br>02.17.2014 @ 0:17:42<br>03.28.2014 @ 11:59:56<br>Revisions<br>heats Same Revision Level<br>Description<br>Preliminary Planning & Initial Layou<br>                                                                     |
| FILE:<br>CREATING<br>EDITING<br>SAVED:<br>SAVED:<br>PLOTTE<br>Rev.<br>000<br>001<br>002<br>003<br>004<br>005<br>006<br>007<br>008           | ED:<br>3 TME:<br>SZE:<br>D:<br>D:<br>02.17.2014<br><br><br><br><br><br><br>                                                    | 02.17.2014 • 11:17:32<br>7htm IFLE 5/22: 3235.66<br>AVS 8 (7.00 x 11:00 inch<br>02.17.2014 • 6:17:42<br>03.26.2014 • 11:59:56<br>Revision S<br>heets Some Revision Level<br>Description<br>Preliminary Pionning & Initial Layou<br><br><br><br><br><br><br><br><br><br>                                |
| FILE:<br>CREATI<br>PAPER<br>SAVED:<br>PLOTTE<br>PLOTTE<br>Rev.<br>000<br>001<br>002<br>003<br>004<br>005<br>006<br>006<br>007<br>008<br>009 | ED:<br>3 TIME:<br>3 TIME:<br>SIZE:<br>D:<br>COLOR:<br>All SI<br>Dote<br>02.17.2014<br><br><br><br><br><br><br><br><br><br><br> | 02.17.2014 @ 11:17.32<br>7h8m  FLE 022: 326.86<br>ANS 8 (7.00 x 11.00 hch<br>02.17.2014 @ 6:17.42<br>03.26.2014 @ 11:58:56<br>Revisions<br>nests Same Revision Lavel<br>Description<br>Preliminary Planning & Initial Layou<br><br><br><br><br><br><br>                                                |
| FILE:<br>CREATI<br>PAPER<br>SAVED:<br>PLOTTE<br>PLOTTE<br>Rev.<br>000<br>001<br>002<br>003<br>004<br>005<br>006<br>007<br>008<br>009<br>000 | ED:<br>TME:<br>SZE:<br>D:<br>D:<br>All SI<br>Date<br>02(17.2014<br><br><br><br><br><br><br><br><br><br><br><br><br><br>        | 02.17.2014 0 11:17:32<br>7/8m //LE 5/2E 2325.66<br>AVS 8 (7.00 x 11.00 Inch<br>02.17.2014 0 6:17:42<br>03.28.2014 0 11:59:56<br>Revisions<br>heats Same Revision Level<br>Description<br>Preliminary Planning & Initial Layou<br><br><br><br><br><br><br><br><br><br>                                  |
| FILE:<br>CREATI<br>PAPER<br>SAVED<br>PLOTTE<br>Rev.<br>000<br>001<br>002<br>003<br>004<br>005<br>006<br>007<br>008<br>009<br>010            | ED:<br>3 TME:<br>3 TME:<br>3 TME:<br>3 TME:<br>02:<br>02:<br>02:<br>02:<br>02:<br>02:<br>02:<br>02                             | 02.17.2014 • 11:17:32<br>7htm IFLE SIZE: 3285.66<br>AVSI & 07.00 x 11:00 Inch<br>02.17.2014 • 6:17:42<br>03.26.2014 • 0:17:42<br>Revisions<br>neets Some Revision Level<br>Description<br>Preliminary Planning & Initial Layou<br>                                                                     |
| FILE:<br>CREATI<br>PAPER<br>SAVED<br>PLOTTE<br>Rev.<br>000<br>001<br>002<br>003<br>004<br>005<br>006<br>007<br>008<br>009<br>010            | D:<br>TME:<br>SIZE:<br>D:<br>D:<br>All \$9<br>02.17.2014<br><br><br><br><br><br><br><br><br><br>SHEE                           | 02.17.2014 @ 11:17.32<br>7h8m [PLE 022: 328.66<br>AVS 8 (7.00 x 11:00 hch<br>02.17.2014 @ 5:17.42<br>03.26.2014 @ 11:58:56<br>Revisions<br>neets Same Revision Level<br>Description<br>Preliminary Planning & Initial Layou<br><br><br><br><br><br><br><br><br><br><br>T: 002 OF 085                   |
| FILE:<br>CREATI<br>PAPERS<br>SAVED:<br>PLOTTE<br>Rev.<br>000<br>001<br>002<br>003<br>004<br>005<br>006<br>007<br>008<br>009<br>010          | ED:<br>TIME:<br>STZE:<br>D:<br>Date<br>02:17.2014<br><br><br><br>SHEE<br>SHEE                                                  | 02.17.2014 • 11:17:32<br>7htm IPLE 322: 2325.66<br>AVS 8 (7.00 x 11.00 Inch<br>02.17.2014 • 0:17:42<br>03.28.2014 • 0:17:42<br>03.28.2014 • 0:17:42<br>0.28.2014 • 0:17:42<br>0.29.2017 • 0:15:95<br>Revisions<br>heats Same Revision Level<br>Description<br>Preliminary Planning & Initial Layou<br> |



#### Ground Bearing Pressure Summary

| Load Case                     | Minimum Radius | GBP At Minimum Radius    | Maximum Radius | GBP At Maximum Radius    |
|-------------------------------|----------------|--------------------------|----------------|--------------------------|
| 253' S Olbs Lood              | 38'-1"         | 2,729lbs/ft <sup>2</sup> | 230'-0"        | 3,544lbs/ft <sup>a</sup> |
| 253' S 5,601lbs Load          | 38'-1"         | 2,594lbs/ft <sup>2</sup> | 213'-9"        | 3,982lbs/ft <sup>2</sup> |
| 253' S 8,134lbs Load          | 38'-1"         | 2,548lbs/ft*             | 204'-8"        | 3,985lbs/ft*             |
| 253' S 13,664lbs Load         | 38'-1"         | 2,410lbs/ft <sup>2</sup> | 187'-9"        | 3,992lbs/ft*             |
| 253' S 30,541lbs Load         | 38'-1"         | 2,142lbs/ft <sup>2</sup> | 149'-8"        | 3,963lbs/ft <sup>2</sup> |
| 253' S 32,791lbs Load         | 38'-1"         | 2,095lbs/ft <sup>2</sup> | 145'-8"        | 3,967lbs/ft <sup>a</sup> |
| 253' S 37,737lbs Load         | 38'-1"         | 2,005lbs/ft <sup>2</sup> | 137'-10"       | 3,974lbs/ft*             |
| 253' S 43,670lbs Load         | 38'-1"         | 1,975lbs/ft <sup>2</sup> | 129'-7"        | 3,984lbs/ft <sup>2</sup> |
| 253' S 50,791lbs Load         | 38'-1"         | 1,835lbs/ft <sup>2</sup> | 121'-0"        | 3,984lbs/ft*             |
| 253' S 52,113lbs Load         | 38'-1"         | 1,778lbs/ft*             | 119'-6"        | 3,987lbs/ft*             |
| 253' S 59,830lbs Load         | 38'-1"         | 1,705lbs/ft <sup>2</sup> | 111'-6"        | 3,993lbs/ft <sup>2</sup> |
| 253' S 81,719lbs Load         | 38'-1"         | 1,422lbs/ft <sup>2</sup> | 93'-2"         | 3,911lbs/ft*             |
| 253' S 112,363lbs Load        | 38'-1"         | 1,048lbs/ft <sup>z</sup> | 76'-6"         | 3,992lbs/ft*             |
| 253' S 128,363lbs Load        | 38'-1"         | 1,020lbs/ft <sup>2</sup> | 69'-3"         | 3,902lbs/ft*             |
| 253'/57' S2F2 Olbs Load       | 45'-6"         | 2,556lbs/ft <sup>2</sup> | 205'-4"        | 3,950lbs/ft <sup>2</sup> |
| 253'/57' S2F2 69,361lbs Load  | 45'-6"         | 1,385lbs/ft*             | 103'-6"        | 3,967lbs/ft*             |
| 253'/57' S2F2 78,582lbs Load  | 45'-6"         | 1,156lbs/ft <sup>2</sup> | 92'-7"         | 3,986lbs/ft <sup>a</sup> |
| 253'/57' S2F2 81,179lbs Load  | 45'-6"         | 1,081lbs/ft <sup>2</sup> | 90'-6"         | 3,931lbs/ft <sup>2</sup> |
| 253'/57' S2F2 112,363lbs Load | 45'-6"         | 1,201lbs/ft*             | 74'-9"         | 3,963lbs/ft <sup>2</sup> |
| 253'/57' S2F2 128,363lbs Load | 45'-6"         | 1,526lbs/ft <sup>*</sup> | 68'-4"         | 3,918lbs/ft <sup>a</sup> |



# **GBP** Analysis Animation



Industrial Training

SHOWCASE WEBINAR SERIES



## Summary

- Are all timbers of the mat being loaded when under an outrigger?
- Is the full length of the mat being considered as "effective"?
  - If so, what are the bearing and shear stresses in the mat?
  - If not, what effective length is bearing into the soil?
- Have all worst case scenarios been considered?
  - Empty hook conditions?
  - Worst case swing angles?
  - Crane erection?
- Are hard ground or soft ground numbers being used for crawler track pressures?
  - Does the effective bearing area of the tracks match the soft/hard ground condition?
  - If soft ground numbers are being used, what is the justification?





# **QUESTIONS?**

